9 #ifndef MKNN_PREDEFINED_DISTANCE_H_
10 #define MKNN_PREDEFINED_DISTANCE_H_
16 #include "../metricknn_c.h"
228 int64_t matrix_cols,
double *cost_matrix,
bool normalize_vectors);
249 int64_t num_dims_discard,
double pct_discard,
double threshold_discard);
270 bool free_subdistances_on_release,
double *normalization_values,
271 double *ponderation_values,
272 bool with_auto_config,
MknnDataset *auto_config_dataset,
273 double auto_normalize_alpha,
bool auto_ponderation_maxrho,
274 bool auto_ponderation_maxtau);
Definition: parameters.c:18
Definition: distance.c:17
MknnDistanceParams * mknn_predefDistance_EMD(int64_t matrix_rows, int64_t matrix_cols, double *cost_matrix, bool normalize_vectors)
Creates an object for Earth Mover's Distance.
Definition: predefined_distance.c:66
MknnDistanceParams * mknn_predefDistance_CosineDistance(bool normalize_vectors)
Creates an object for Cosine Distance.
Definition: predefined_distance.c:59
MknnDistanceParams * mknn_predefDistance_L2()
Creates an object for Euclidean distance.
Definition: predefined_distance.c:16
void mknn_predefDistance_helpPrintDistance(const char *id_dist)
Prints to standard output the help for a distance.
Definition: distance.c:111
bool mknn_predefDistance_testDistanceId(const char *id_dist)
Tests whether the given string references a valid pre-defined distance.
Definition: distance.c:116
MknnDistanceParams * mknn_predefDistance_Chi2()
Creates an object for Chi2 distance.
Definition: predefined_distance.c:42
MknnDistanceParams * mknn_predefDistance_L2squared()
Creates an object for squared Euclidean distance.
Definition: predefined_distance.c:21
MknnDistanceParams * mknn_predefDistance_Lp(double order)
Creates an object for Minkowski distance.
Definition: predefined_distance.c:31
MknnDistanceParams * mknn_predefDistance_L1()
Creates an object for Manhattan or Taxi-cab distance.
Definition: predefined_distance.c:11
MknnDistanceParams * mknn_predefDistance_Hamming()
Creates an object for Hamming distance.
Definition: predefined_distance.c:37
void mknn_predefDistance_helpListDistances()
Lists to standard output all pre-defined distances.
Definition: distance.c:95
MknnDistanceParams * mknn_predefDistance_DPF(double order, int64_t num_dims_discard, double pct_discard, double threshold_discard)
Creates an object for Dynamic Partial Function distance.
Definition: predefined_distance.c:77
MknnDistanceParams * mknn_predefDistance_Lmax()
Creates an object for L-max distance.
Definition: predefined_distance.c:26
MknnDistanceParams * mknn_predefDistance_CosineSimilarity(bool normalize_vectors)
Creates an object for Cosine Similarity.
Definition: predefined_distance.c:52
MknnDistanceParams * mknn_predefDistance_MultiDistance(int64_t num_subdistances, MknnDistance **subdistances, bool free_subdistances_on_release, double *normalization_values, double *ponderation_values, bool with_auto_config, MknnDataset *auto_config_dataset, double auto_normalize_alpha, bool auto_ponderation_maxrho, bool auto_ponderation_maxtau)
Defines a multi-distance, which is a weighted combination of distances.
Definition: predefined_distance.c:88
MknnDistanceParams * mknn_predefDistance_Hellinger()
Creates an object for Hellinger distance.
Definition: predefined_distance.c:47